If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+60x+56=0
a = -16; b = 60; c = +56;
Δ = b2-4ac
Δ = 602-4·(-16)·56
Δ = 7184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7184}=\sqrt{16*449}=\sqrt{16}*\sqrt{449}=4\sqrt{449}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{449}}{2*-16}=\frac{-60-4\sqrt{449}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{449}}{2*-16}=\frac{-60+4\sqrt{449}}{-32} $
| 1g-8=5g+4 | | x/16=16/4 | | 4=1-2(x+1) | | 3+(x+3)+4x=8 | | 3(2x+1-4x+1)+4=2(1+5-2x) | | .6x-2(x+2)=2-3(x+3) | | 9x+5x-4x-5=65 | | X-0.65x=140 | | 3(3y-8=30 | | 50x4x=200+80 | | X+5=2x/7 | | W+14w-6w=0 | | 9x-2x-80=200 | | 67d+20d=300+20d | | 7x-4x-50=250 | | (2n-3)+(3n-2)+(n)=180 | | -16(x+16)=4(x-64) | | 11/15t-7/20=-2 | | 7x-5=2x-7 | | 4x-25=37 | | 2x+3x=60+40 | | x^2+4=400 | | 11/15x-7/20=-2 | | 7-3(2y-7)=76 | | (9x-6)+60=180 | | 20x+15=17x3 | | 7-|4x-4|=-13 | | (2/3)x+7=19 | | 1-2(4-3x-3)=4(x-5)-1 | | (8r+6)+(4r-1)=4 | | 40+60+(2x)=180 | | 4x^2-41x-84=0 |